多世界詮釋
維基百科,自由的百科全書
1957年,最初的相對狀態提法由休·艾弗雷特發表。[2][3]後來在1960年代和1970年代,這一提法普及,並由布萊斯·德威特改名為多世界理論。[1][4][5][6]去相干方法在解釋量子理論方面得到了進一步的探索和發展,[7][8][9]因而相當受歡迎。多世界詮釋是物理學和哲學眾多平行宇宙假說之一。除了多世界詮釋,目前的量子力學詮釋主要還包括:去相干詮釋、坍縮詮釋(又分客觀性坍縮詮釋和傳統的哥本哈根詮釋)、隱變量理論(主要是非局域隱變量理論例如德布羅意-玻姆理論)等等。
目錄
對共存狀態崩潰的解釋
當觀測一個處於共存狀態的量子時,會引起這種共存狀態的崩潰,從而使量子只顯現粒子的性質[a]。多世界詮釋認為,觀測時分離出無數個平行宇宙,每個宇宙都有一個確定的狀態,而我們只是在其中的一個特定宇宙。1957年美國普林斯頓大學休·艾弗雷特三世最早提出多世界理論[2][3],他假設所有孤立系統的演化都遵循薛丁格方程式,波函數不會崩坍,而量子的測量卻只能得到一種結果,也就是說,量子處於疊加態。艾弗雷特認為測量儀器與被測系統的狀態之間有某種關聯,稱之為相對態(relative state)。艾弗雷特語出驚人地表示,測量帶來的不是坍縮,而是分裂(Splitting)的宇宙。宇宙誕生以來,已經進行過無數次這樣的分裂。他說宇宙像一個阿米巴變形蟲,當電子通過雙縫後,這個蟲子自我裂變,繁殖成為兩個幾乎一模一樣的變形蟲。唯一的不同是,一隻蟲子只記得電子從左而過,另一隻蟲子只記得電子從右而過。這樣一來,薛丁格的貓再也不必為死活問題困擾,宇宙分裂成了兩個,一個有活貓,一個有死貓[b]。他的導師惠勒意識到「分裂」(Splitting)這個用詞的不妥,易產生誤導,他在論文的空白里寫道:「分裂?最好換個詞。」
對於多世界詮釋,物理學界的反應異常冷淡,1959年艾弗雷特飛去哥本哈根見到波耳,尼爾斯·波耳沒有作任何評論。
愛因斯坦曾 說:「我不能相信,僅僅是因為看了它一眼,一隻老鼠就使得宇宙發生劇烈的改變。」德克薩斯大學的布萊斯·德威特(Bryce S. DeWitt)表示:「我仍然清晰地記得,當我第一次遇到多世界概念時所受到的震動。100個略有缺陷的自我複製,都在不停地分裂成進一步的複製,而最後 面目全非。這個想法是很難符合常識的。」
艾弗雷特心灰意冷,退出理論物理界,在美國五角大廈武器系統評估組的防禦分析協會,主要研究核武與計算機。直至1960及1970年代,布萊斯·德威特重新提出多世界詮釋[1],它成為物理界熱門的話題之一。
注釋
參見
參考文獻
- ^ 1.0 1.1 1.2 Bryce Seligman DeWitt, Quantum Mechanics and Reality: Could the solution to the dilemma of indeterminism be a universe in which all possible outcomes of an experiment actually occur?, Physics Today, 23(9) pp 30-40 (September 1970) "every quantum transition taking place on every star, in every galaxy, in every remote corner of the universe is splitting our local world on earth into myriads of copies of itself." See also Physics Today, letters followup, 24(4), (April 1971), pp 38-44
- ^ 2.0 2.1 Hugh Everett Theory of the Universal Wavefunction, Thesis, Princeton University, (1956, 1973), pp 1–140
- ^ 3.0 3.1 Everett, Hugh. Relative State Formulation of Quantum Mechanics. Reviews of Modern Physics. 1957, 29: 454–462. Bibcode:1957RvMP...29..454E. doi:10.1103/RevModPhys.29.454.
- ^ Cecile M. DeWitt, John A. Wheeler eds, The Everett–Wheeler Interpretation of Quantum Mechanics, Battelle Rencontres: 1967 Lectures in Mathematics and Physics (1968)
- ^ Bryce Seligman DeWitt, The Many-Universes Interpretation of Quantum Mechanics, Proceedings of the International School of Physics "Enrico Fermi" Course IL: Foundations of Quantum Mechanics, Academic Press (1972)
- ^ Bryce Seligman DeWitt, R. Neill Graham, eds, The Many-Worlds Interpretation of Quantum Mechanics, Princeton Series in Physics, Princeton University Press (1973), ISBN 0-691-08131-X Contains Everett's thesis: The Theory of the Universal Wavefunction, pp 3–140.
- ^ H. Dieter Zeh, On the Interpretation of Measurement in Quantum Theory, Foundation of Physics, vol. 1, pp. 69–76, (1970).
- ^ Wojciech Hubert Zurek, Decoherence and the transition from quantum to classical, Physics Today, vol. 44, issue 10, pp. 36–44, (1991).
- ^ Wojciech Hubert Zurek, Decoherence, einselection, and the quantum origins of the classical, Reviews of Modern Physics, 75, pp 715–775, (2003)
延伸閱讀
- Jeffrey A. Barrett, The Quantum Mechanics of Minds and Worlds, Oxford University Press, Oxford, 1999.
- Peter Byrne, The Many Worlds of Hugh Everett III: Multiple Universes, Mutual Assured Destruction, and the Meltdown of a Nuclear Family, Oxford University Press, 2010.
- Jeffrey A. Barrett and Peter Byrne, eds., "The Everett Interpretation of Quantum Mechanics: Collected Works 1955–1980 with Commentary", Princeton University Press, 2012.
- Julian Brown, Minds, Machines, and the Multiverse, Simon & Schuster, 2000, ISBN 0-684-81481-1
- Paul C.W. Davies, Other Worlds, (1980) ISBN 0-460-04400-1
- James P. Hogan, The Proteus Operation (science fiction involving the many-worlds interpretation, time travel and World War 2 history), Baen, Reissue edition (August 1, 1996) ISBN 0-671-87757-7
- Adrian Kent, One world versus many: the inadequacy of Everettian accounts of evolution, probability, and scientific confirmation
- Andrei Linde and Vitaly Vanchurin, How Many Universes are in the Multiverse?
- Osnaghi, Stefano; Freitas, Fabio; Olival Freire, Jr. The Origin of the Everettian Heresy (PDF). Studies in History and Philosophy of Modern Physics. 2009, 40: 97–123. doi:10.1016/j.shpsb.2008.10.002. A study of the painful three-way relationship between Hugh Everett, John A Wheeler and Niels Bohr and how this affected the early development of the many-worlds theory.
- Asher Peres, Quantum Theory: Concepts and Methods, Kluwer, Dordrecht, 1993.
- Mark A. Rubin, Locality in the Everett Interpretation of Heisenberg-Picture Quantum Mechanics, Foundations of Physics Letters, 14, (2001), pp. 301–322, arXiv:quant-ph/0103079
- David Wallace, Harvey R. Brown, Solving the measurement problem: de Broglie–Bohm loses out to Everett, Foundations of Physics, arXiv:quant-ph/0403094
- David Wallace, Worlds in the Everett Interpretation, Studies in the History and Philosophy of Modern Physics, 33, (2002), pp. 637–661, arXiv:quant-ph/0103092
- John A. Wheeler and Wojciech Hubert Zurek (eds), Quantum Theory and Measurement, Princeton University Press, (1983), ISBN 0-691-08316-9
- Sean M. Carroll, Charles T. Sebens, Many Worlds, the Born Rule, and Self-Locating Uncertainty, arXiv:1405.7907
外部連結
維基詞典上的字詞解釋 | |
維基共享資源上的多媒體資源 | |
維基新聞上的新聞 | |
維基語錄上的名言 | |
維基文庫上的原始文獻 | |
維基教科書上的教科書和手冊 | |
維基學院上的學習資源 |
- Everett's Relative-State Formulation of Quantum Mechanics - Jeffrey A. Barrett's article on Everett's formulation of quantum mechanics in the Stanford Encyclopedia of Philosophy.
- Many-Worlds Interpretation of Quantum Mechanics - Lev Vaidman's article on the many-worlds interpretation of quantum mechanics in the Stanford Encyclopedia of Philosophy.
- Hugh Everett III Manuscript Archive (UC Irvine) - Jeffrey A. Barrett, Peter Byrne, and James O. Weatherall (eds.).
- Michael C Price's Everett FAQ -- a clear FAQ-style presentation of the theory.
- The Many-Worlds Interpretation of Quantum Mechanics - a description for the lay reader with links.
- Against Many-Worlds Interpretations by Adrian Kent
- Many-Worlds is a "lost cause" according to R. F. Streater
- The many worlds of quantum mechanics John Sankey
- Max Tegmark's web page
- Henry Stapp's critique of MWI, focusing on the basis problem Canadian J. Phys. 80,1043–1052 (2002).
沒有留言:
張貼留言